Sign Retrieval in Shift-Invariant Spaces with Totally Positive Generator

نویسندگان

چکیده

Abstract We show that a real-valued function f in the shift-invariant space generated by totally positive of Gaussian type is uniquely determined, up to sign, its absolute values $$\{|f(\lambda )|: \lambda \in \Lambda \}$$ { | f ( λ ) : ∈ Λ } on any set $$\Lambda \subseteq {\mathbb {R}}$$ ⊆ R with lower Beurling density $$D^{-}(\Lambda )>2$$ D - > 2 . consider , i.e., $$g L^2({\mathbb {R}})$$ g L whose Fourier transform factors as $$\begin{aligned} \hat{g}(\xi )= \int _{{\mathbb {R}}} g(x) e^{-2\pi i x \xi } dx = C_0 e^{- \gamma ^2}\prod _{\nu =1}^m (1+2\pi i\delta _\nu )^{-1}, \quad {R}}, \end{aligned}$$ ^ ξ = ∫ x e π i d C 0 γ ∏ ν 1 m + δ , $$\delta _1,\ldots ,\delta _m\in C_0, >0, m {N}} \cup \{0\}$$ … N ∪ and V^\infty (g) \Big \{ f=\sum _{k {Z}}} c_k\, g(\cdot -k): c \ell ^\infty ({\mathbb {Z}}) \}, V ∞ ∑ k Z c · ℓ integer shifts within $$L^\infty As consequence (1), each $$f (g)$$ continuous, defining series converges unconditionally weak $$^*$$ ∗ topology $$ coefficients $$c_k$$ are unique [6, Theorem 3.5].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling Theorems for Shift-invariant Spaces, Gabor Frames, and Totally Positive Functions

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

O ct 2 01 7 SAMPLING THEOREMS FOR SHIFT - INVARIANT SPACES , GABOR FRAMES , AND TOTALLY POSITIVE FUNCTIONS

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Generalized Irregular Sampling in Shift-Invariant Spaces

This article concerns the problem of stable recovering of any function in a shiftinvariant space from irregular samples of some filtered versions of the function itself. These samples arise as a perturbation of regular samples. The starting point is the generalized regular sampling theory which allows to recover any function f in a shiftinvariant space from the samples at {rn}n∈Z of s filtered ...

متن کامل

Locally Finitely Dimensional Shift - Invariant Spaces In

We prove that a locally nitely dimensional shift-invariant linear space of distributions must be a linear subspace of some shift-invariant space generated by nitely many compactly supported distributions. If the locally nitely dimensional shift-invariant space is a subspace of the HH older continuous space C or the fractional

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2021

ISSN: ['1531-5851', '1069-5869']

DOI: https://doi.org/10.1007/s00041-020-09804-z